Data Management Plans A Perspective from the Materials Database Community

Steve Freiman Freiman Consulting

John Rumble Information International Associates, Inc.

National Science Foundation

July 28, 2011

NSF Workshop of Materials Data Management Plans

28 July 2011

Today's Talk

Setting the Stage

- What is materials data?
- Who produces materials data and why?
- Who produces materials databases and why?
- What Have We learned About Materials Data and Databases
- Why is there a problem?
- The complexity of materials data
- The role of standards

What lies ahead

What is Materials Data?

- Chemical: What is present in what amounts and how associated
- Structural: How are things arranged; crystals, micro
- Intrinsic: Properties stemming from the structure and composition; not test dependent
- Performance: Test dependent properties to understand how a material performs under specified conditions (stress, cyclical loads, impact, wear, etc.)
- Reactive: Interactions with the environment (corrosion, oxidation, flammability
- Transformation into a product: Ability to be shaped, formed, etc.

Each data category must be considered separately

Who Produces Materials Data and Why?

- Material researchers: For understanding
- Material developers: For a new material
- Materials adaptors: To make an existing material better in some way
- Potential material users: To understand if a material is suitable for some use
- Failure analyst: To understand why a material failed
- Test Developer: To correlate predicted performance better with actual performance
- Regulators: To ensure the correct material is used, or a material is used correctly
- And more

Each use requires a different kind and amount of data

Who Produces Materials Databases and Why

- Government agencies: NIST, DOE, DOD, others
- Professional Societies: ACerS, ASM Intl, JCPDD
- Commercial Publishers: Various plastics handbooks

And Why?

- To support specific types of uses (processing, material selection, analysis)
- To make money
- To provide data sharing for their constituents
- To avoid remeasurements

What Have We Learned?

- That can help us understand what data need to be preserved and how
- That will help NSF develop robust materials data management plans

First a couple of problems

- Stars, crystals, etc. are forever; they are immutable
- Materials are not!!!
 - E.g. Ceramics are complex, rapidly changing, and lack specifications

Materials Evolve

• Collecting all data on things that don't change is relatively easy

 Just keep doing it and eventually you can pull everything together

- Ceramics change, often faster than one can keep track of the changes
- Today's materials and tests are not the same as yesterday's
- Lack of specifications, e.g. all 96% aluminas are likely to have different properties

The Complexity of Materials

What changes?

- Microstructure
- Composition
- Processing history
- Purity
- Surface treatment
- Heat treatment
- Color; shape; form; etc.
- Workability; formability; joining characteristics
- More

The Complexity of Materials

- When materials change, properties change
- The tests that generate property data also change
- Data compilations are always out-of-date
- Data on the latest material are often proprietary and not available
- Fracture mechanics data on glasses collected at NIST (then NBS) in early 1980's
- We now know that many of the test procedures used are suspect; data of questionable value

The Role of Formats

 Because of the complexity and varying nature of materials, many types of materials data are difficult to place in standard formats.

Property	Туре	Difficulty in Standardizing Data
Chemical:	What is present in what amounts and how associated	For specific material types (alloys, ceramics, etc) OK; For composites and plastics, can be very difficult
Structural:	How are things arranged	Crystallographic data are well standardized
Intrinsic:	Properties stemming from the structure and composition; not test dependent	Well-defined intrinsic properties lend themselves to standard formats
Performance:	Test dependent properties to understand how a material performs under specified conditions (stress, cyclical loads, impact, wear, etc.)	Can be very difficult depending on complexity of test method, number of variations, standardization of test machines, etc.
Reactive:	Interactions with the environment (corrosion, oxidation, flammability	So far have limited attempts because of complexity of describing environments
Transformation into a product	Ability to be shaped, formed, etc.	For some types (e.g. casting, machinability) OK; others are difficult

NSF Workshop of Materials Data Management Plans

28 July 2011

What Lies Ahead?

Questions to be considered

- Which types of materials data should be preserved?
- Are there existing materials data repositories?
- What kind of new repositories are needed?
- If not repositories, what?
- What kinds of information for each materials data type needed to make preserved data useful?
 - ▲ For the next research step?
 - ↓ For transitory use (a decade or less)?
 - ↓ For a long time (more than a decade)?
 - ✓ Forever?

What Lies Ahead

- One set of repositories clearly won't work
- New repositories require a significant investment. Where will the support come from?
- Not all data are equal. How do you decide what is important enough to preserve?
- What metadata and data fields are needed?
- Metadata standards can help; need three types
 - 1. The minimum set of metadata necessary to make a data set understandable
 - 2. How to report other metadata likely to be reported
 - 3. Format for new types of metadata

Summary

- The complexity of materials and the existence of disparate materials and property types has complicated the development of large scale databases, in contrast to other sciences
- Regardless of the problems, more materials data needs to be preserved than is now being done
- The development of NSF materials data management plans must recognize one size does not fit all types of materials data
- NSF should build on the knowledge gained from more than 30 years of building materials databases and data standards