A Needs-Based Assessment of Nanotechnology Environmental Health & Safety

<u>Thomas A. Campbell, PhD</u> Nanotechnology Program Manager ADA Technologies, Inc.

& Clare M. Allocca Chief, U.S. Measurement System Office Technology Services National Institute of Standards and Technology

National Institute of Standards and Technology Technology Administration U.S. Department of Commerce

Environmental, Health & Safety Issues in Nanomaterials Workshop, June 9-10, 2008

Outline

- USMS initial results
- Nanotechnology-EHS focus

Nanomaterials and the USMS Assessment: Observations

High demand for new advanced measurement instrumentation for accurate, high resolution characterization of physical, chemical and biological properties of materials at nanometer dimensions

Principal measurement barrier to innovation is the absence of measurement instruments, techniques and methods capable of accurately characterizing the behavior of complex materials systems and structures Absence of regulations is having a serious impact on innovation

Timely delivery of materials measurement solutions is increasingly challenging

Key factor driving the need for innovation is anticipation of the production/marketplace needs for the evaluation of Materials Performance, Manufacturability, and Reliability

Lux Research Inc. • 645 Madison Avenue, 22nd Floor New York, NY 10022 • 888-589-7373 www.luxresearchinc.com First International Technology Conference on Communication and 17 Cooperation, June 3, 2005; Matthew M. Nordan, VP of Research +1 646 723 0705 • matthew.nordan@luxresearchinc.com

What are the Components of an Authenticated MN (How)?

- MN Template
 - Technological innovation at stake
 - Economic significance of the innovation
 - Technical barrier to the innovation
 - Stage of innovation at which technical barrier appears
 - Measurement-problem part of the technical barrier
 - Potential solutions to the measurement problem
 - Potential providers of these solutions
- Tags / Indicators
 - MN Characteristics that may be used to compare MNs
- Authentication
 - Evidence that MN represents a significant portion of Measurement Solution Users

31 Measurement Needs (MNs) submitted by Scientists & Engineers – examples include:

- o Nano-scale drug delivery
- o Toxicology of nanoparticles in biological systems
- Real time measurements for pharmaceuticals and biologics manufacturing
- Advanced drug delivery systems, including implantable devices that automatically administer drugs and sense drug levels
- o Sensors for airborne chemicals or other toxins
- o Nanocrystal biophotonic sensors
- o Nanomagnetic MRI contrast agents
- o Inhalation insulin delivery/diabetes management
- o Small particle monitoring for advanced semiconductor manufacturing
- o Health care/nanotechnology cancer diagnosis and treatment
- o Quality control in cytometry for improved clinical diagnostics
- o C60 carbon nanomaterials for nanobiotechnology

104 Roadmap Measurement Needs (RMNs) identifed from roadmaps, workshop reports, and white papers – *sources include:*

Roadmap, White Paper or Workshop Report	Year	Source	# of RMNs
Strategy for Nanotechnology-Related Environmental, Health, and Safety Research	2008	http://www.nano.gov/	4
Toxicology steps up to nanotechnology safety	2008	http://www.rdmag.com/	7
Strategic Plan for NIOSH Nanotechnology Research and Guidance	2008	http://www.cdc.gov/niosh/topics/nanotech/strat_plan.ht ml_	3
Nanotechnology - A report of the US FDA Nanotechnology Task Force (FDA)	2007	http://www.fda.gov/nanotechnology/taskforce/report2007 .html	3
Prioritization of EHS Research Needs for Engineered Nanoscale Materials - An interim document for public comment (NEHI Working Group)	2007	http://www.nano.gov/Prioritization_EHS_Research_Nee ds_Engineered_Nanoscale_Materials.pdf	21
Nanomaterials in the workplace - Policy and planning workshop on Occupational Safety		http://www.rand.org/pubs/conf_proceedings/2006/RAND	2
EHS Research Needs for Engine	eered	Nanoscale Materials	6
د (NNI)			3
The inational manotechnology initiative - Strategic Pran	2007	nttp://www.nano.gowntmi/about/strategicpian.ntmi	2
Nanotechnology environmental health & safety standards	2007	http://www.iso.org/iso/iso-focus-index_	4
EHS Research Needs for Engineered Nanoscale Materials	2006	nttp://www.nano.gow/NNL_EHS_research_needs.pdf	31
Prioritization of EHS Research N	leeds	for Engineered	1
Nanoscale Materials (NEHI)	100000		2
Assessment Study on Sensors and Automation in the Industries of the Future	2004	n/pdfs/doe_report.pdf	1
International Technology Roadmap for Semiconductors	2004	http://www.itrs.net/Common/2004Update/2004Update.ht	1
Chemical Industry R&D Roadmap for Nanomaterials By Design	2003	http://www.chemicalvision2020.org/pdfs/nano_roadmap. pdf	1
Nanoscale Science and Engineering for Agriculture and Food Systems	2003	http://www.nseafs.comell.edu/web.roadmap.pdf	1
Nanobiotechnology	2003	http://www.nano.gov/nni_nanobiotechnology_rpt.pdf	3
Nanotechnology	2003	http://www.technology.gov/reports/TechPolicy/Nanotech /030523.pdf	2
Nanotechnology and the Environment: Applications and Implications STAR Progress Review Workshop	2002	http://es.epa.gov/ncer/publications/workshop/nano_proc eed.pdf	3
Nanotechnology Innovation for Chemical, Biological, Radiological, and Explosive Detection and Protection	2002	http://www.wtec.org/nanoreports/cbre/CBRE_Detection _11_1_02_hires.pdf	2
Vision 2020 Materials Technology Roadmap	2000	http://www.eere.energy.gov/industry/chemicals/pdfs/mat erials_tech_roadmap.pdf	1
		U.S. Department of Commerce	nnologies, Inc.

Preliminary Inferential Analysis of nano-EHS Measurement Needs (MNs) & Roadmap Measurement Needs (RMNs) Data analyzed from 31 MNs and 104 RMNs

NIST National Institute of Standards and Technology Technology Administration U.S. Department of Commerce

NIST National Institute of Standards and Technology Technology Administration U.S. Department of Commerce

NIST National Institute of Standards and Technology Technology Administration U.S. Department of Commerce

					Mea	asur	eme	nt S	olu	tion	Barri	ers				
Stage of Technological Innovation	Acceptability/Compatibility	Accessibility	Accuracy	Data, Data Collection and/or Retrieval	Destructive	Expense	Lack of fundamental knowledge	Multiple Solutions Exist	Not Standardized	Production Readiness	Reliability	Resolution	Small Market Demand	Speed	System-Level Problem	Workforce
Applied Research	2	3	101	22	3	2	- 44	- 16	18	6	72	48	2	- 9	- 38	2
Production	2	2	8	4		1	6	2	7	3	5	4		3	3	4
Market			2	2					4		4					
End-use																

									Me	easi	irem	ent	Sol	utio	ons										
			Infr	astru	ctur	e			Products												Services				
Stage of Technological	oordination/ facilitation	ata Collection/ Retrieval	evelopment for easurement Technology	undamental Scientific nowledge	rotocols	esearch for Measurement cience	tandards	ser Facility	alibration Method	omputation Method	easurement Instrument	easurement Method	etrics/ Benchmarks	aw Properties Data	eference Data	oftware	tability Tests	tandard/CRM	est Methods - Production cale	est Methods - Consumer roducts	alidated Data	alibration Services	xpert Consultation	ternational Recognition	d Party Verification
Innovation	Ŭ	õ	Ω	ΞŻ	Ы	R. S.	SI	ñ	Ű	Ŭ	Σ	Σ	Σ	ñ	ĕ	õ	S	S	Š	ГĔ	Š	Ű	ш	-=	31
Applied Research		2	21	8	87	15	10	4	3	- 7	- 95	- 97	3	- 9	- 4	3	2	- 9	1				3		
Production			4		8		4			2	10	10			1			8	2			1			
Market					2		4			2								2	1	1					
End-use																									

					М	easu	reme	nt So	lutio	n Ba	rriers	5				
Aggregated Measurands	Acceptability/compatibility	Accessibility	Accuracy	Data, data collection and/or retrieval	Destructive	Expense	Lack of fundamental knowledge	Multiple solutions exist	Not standardized	Production readiness	Reliability	Resolution	Small market demand	Speed	System-level problem	Workforce
Classical	2	1	80	21	2	2	35	16	21	5	65	38	1	- 7	32	4
Functional	1	4	15	7	1		8	1	5	2	6	6		1	6	2
Performance																
Structural	1		16			1	7	1	3	2	10	8	1	4	3	

		Stage of	Technolo	ogical Inn	ovation
		pplied Research	roduction	arket	nd-Use
<u> </u>	Neasurand	A	Р	Σ	Ē
2	Biological	7		2	
ssic	Chemical	23	7		
	Physical	31		2	
<u> </u>	Physiological	36	8		
	All	15	2		
	Electronic/Electrical				
_	Magnetic	2			
na	Optical	3	2		
Ĕ	Photonic				
E.	Radio frequency				
-	Thermal - Thermochemical				
	Thermal - Thermodynamic				
	Thermal - Thermophysical				
nce	Computational Performance				
orma	Software Performance				
Perf	System Performance				
a	Kinetic				
tur	Mechanical	3	1		
Inc	Molecular	7			
S	Spatial	10			

						Μ	easu	ireme	nt So	lutio	n Ba	rriers	5					
	Measurand	Acceptability/compatibility	Accessibility	Accuracy	Data, data collection and/or retrieval	Destructive	Expense	Lack of fundamental knowledge	Multiple solutions exist	Not standardized	Production readiness	Reliability	Resolution	Small market demand	Speed	System-level problem	Workforce	
a	Biological			7				2	2	3		9	2		2			
sic	Chemical		1	- 22	7			8	4	3	1	18	17		3	3	1	
as a	Physical	2		- 26	11	2	1	7		9	1	17	10			6		
0	Physiological			- 25	3		1	18	10	6	3	21	9	1	2	23	3	
	All	1	4	8	7	1		4	1	5	2	6	3		1	6	2	
	Electronic/Electrical																	
	Magnetic			2				2					2					
na	Optical			5				2					1					
ctio	Photonic																	
Ĩ	Radio frequency																	
<u> </u>	Thermal - Thermochemical																	
	Thermal - Thermodynamic																	
	Thermal - Thermophysical																	
ce	Computational Performance																	
rman	Software Performance																	
Perfo	System Performance																	
a	Kinetic																	
tur	Mechanical	1		3						1		2	2		2	1		
IUC	Molecular			5				3	1		2	3			1			
St	Spatial			8			1	4		2		5	6	1	1	2		echnologies. Ir
	•							-										0

					Ме	asu	reme	nt S	olut	ion l	Barri	ers				
Aggregated Measurement Solutions	Acceptability/Compatibility	Accessibility	Accuracy	Data, Data Collection and/or Retrieval	Destructive	Expense	Lack of fundamental knowledge	Multiple Solutions Exist	Not Standardized	Production Readiness	Reliability	Resolution	Small Market Demand	Speed	System-Level Problem	Workforce
Infrastructure	4	5	125	35	3	4	- 57	18	-27	5	86	63	- 2	10	- 35	4
Products	5	7	189	40	5	4	82	- 36	- 45	17	149	87	- 4	- 23	- 75	10
Services	1			3			2		1						- 4	1

CONCLUSIONS

- Measurement Needs and Roadmap Measurement Needs are being assessed within the Nano-EHS sector
- Preliminary indications are that Nano-EHS is *early-stage* in its development of measurement solutions
- Nano-EHS measurement needs will *push the envelope* of metrology equipment in the near future
- A concerted effort across multiple disciplines is needed to solve many of the Nano-EHS measurement needs
- It is critical to engage experts in this activity for their opinions on techniques, priorities and strategic directions

PURPOSE OF WORKSHOP

- Engage experts in the field in the development of Measurement Needs to make an accurate assessment of the state-of-the-art Nano-EHS USMS
- Initiate a dialogue about the best means for obtaining measurement *solutions* to addressing measurement needs
- Create a new opportunity for networking among experts in the Nano-EHS research and business sector

