

Max-Planck-Institut für Metallforschung

Physisorption of Hydrogen on Novel Porous Materials

Michael Hirscher, Barbara Panella, and Barbara Schmitz

Max-Planck-Institut für Metallforschung Stuttgart, Germany, EU

Novel Efficient Solid Storage for

Requirements for mobile application

- Low weight
- Small volume
- Driving range: 500 km
- Refueling time: < 3 min.</p>
- No external cooling during refueling
- Lifetime: > 500 cycles
- Low material costs

Mechanism of physisorption

- van der Waals forces
- small enthalpy of adsorption
- non activated process
- molecular adsorption

Advantages of physisorption:

- complete reversibility
- fast ad-/desorption kinetics
- but, low temperature adsorption and desorption

High-surface-area materials

Carbonaceous materials MOFs

talk at 8:40 by Angel Linares-Solano

Zn-MOF-5

The Chemical Company

- metal, ligand
- Over 2000 MOFs prepared
- Easy quality control (e.g. XRD)
- Non-toxic powder (> 1 μm)
- Large-scale synthesis is developed for some MOFs

Hydrogen adsorption

Comparison of microporous materials

B. Panella et al., Adv. Funct. Mater. 16 (2006) 520

How to get any microscopic information?

Low-temp. thermal desorption spectroscopy

B. Panella et al. Micropor. Mesopor. Mater. 103 (2007) 230

Mil-53

Effect of pore size

B. Panella et al. Angew. Chem. Int. Ed. in press, DOI: 10.1002/anie. 200704053

Conclusion and outlook

Physisorption or Fast kinetics and reversibility adsorption of H_2 short refueling time on porous materials low heat evolution Large specific High storage capacity at low temperatures (77 K) surface area New technique Low-temperature TDS Heat of adsorption Pore size? depends on material Metal, ligand? Synthesis of novel materials with large surface area Find **optimal pore size** or composition

Cryo-adsorption tank < 2 MPa

free tank shape

Acknowledgements

Annette Fuchs (BET measurements)

Ulrich Müller

International Max Planck Research School for Advanced Materials

European Commission DG Research (contract 6-2006-518271/NESSHY)

Organizers: George Wicks and Jack Simon

