

Evaluations of Formation and Reversibility of Metal Borohydrides via Volumetric and Nuclear Magnetic Resonance Methods

ROBERT C. BOWMAN, JR. AND JOSEPH W. REITER *Jet Propulsion Laboratory, Pasadena, CA 91109-8099, USA*

SON-JONG HWANG AND CHUL KIM Division of Chemistry and Chemical Engineering California Institute of Technology, Pasadena, CA 91125, USA

HOURIA KABBOUR, JUSTIN PUREWAL, AND C. C. AHN Division of Engineering and Applied Science California Institute of Technology, Pasadena, CA 91125, USA

ACS Hydrogen 2008 Meeting, Cocoa Beach, FL

February 25, 2008

Outline

Introduction & Background

Desorption behavior of the Borohydrides

>Overview of solid state NMR concepts & methods

•Examples of NMR Studies Taken from MHCoE Efforts

≻Desorption of LiBH₄

➢ Reversible destabilization reactions of LiBH₄-MgH₂

Phase relationship in the Li-Sc-B-H system

Summary & Conclusions

What Happens when Borohydrides are Heated? (1)LiBH₄ \rightarrow LiH + B (amorphous) + 1.5H₂↑ (2) M(BH₄)_n \rightarrow MH_x + n"a-B" + (2n-x/2)H₂↑

Several studies have indicated various intermediate phases

Hypothetical candidates: "LiBH₃", "LiBH₂", and "LiBH"

Boron phases mostly NOT identifiable via XRD/NPD ("Amorphous")

During desorption of LiBH₄, "polyboranes" were recently suggested [1,2] from First Principles Theory & Raman spectroscopy as actual phases that formed!

$$LiBH_4 \leftrightarrow \frac{1}{12}Li_2B_{12}H_{12} + \frac{5}{6}LiH + \frac{13}{12}H_2$$
(3)
$$\leftrightarrow LiH + B + \frac{3}{2}H_2.$$
(4)

S. Orimo, et al., APL 89 (2006) 021920
N. Ohba, et al., PRB 74 (2006) 075110

NMR for Complex Metal Hydrides

- •Element specific
- Non-destructive
- •Quantitative
- •Well suited for short range orders chemical bonding, coordination geometries,..
- •Multinuclear Approach: Phase Identification (CS, Quadrupole Interaction)

•Spin-Spin correlation : Connectivity information (dipole coupling)-CPMAS

4

NMR Studies of M-H Systems

- R.G. Barnes, "NMR in Metal Hydrogen Systems" Topics in Applied Physics, Vol 73 (1997), pp 93 – 151.
- R. C. Bowman, Jr. and S.-J. Hwang, "Nuclear Magnetic Resonance Studies of Hydrogen Storage Materials", Mater. Matters 2(No.2), 29 (2007).
- General Review of High Resolution Solid State NMR
- K. J. D. MacKenzie and M. E. Smith, *Multinuclear Solid-State NMR of Inorganic Materials* (Pergamon, Amsterdam, 2002).

High Resolution Solid State NMR

Removing Anisotropic Interactions to Sharpen Spectra

(Pulse manipulations, mechanical rotations) MAS, MQMAS, CPMAS

Bo

 $\omega_{aniso} \sim (3 \cos^2 \theta - 1)$

Magic Angle: $<3\cos^2\theta-1>= 0$ when $\theta_m=54.7^\circ$ ["Magic Angle"]

Multiple Quantum (MQ) NMR Method

 $H=H_z + H_{cs} + H_D$

 $+ H_0$

 $\frac{eQ}{2I(2I-1)\hbar}I\cdot V\cdot I$

Electrostatic gradients

²⁷Al Triple Quantum (3Q) MAS spectrum: showing the presence of 3 distinctive sites in α -phase AIH₃ with two oxide impurities.

Main peak @ ~6 ppm from α -AlH₃ with two "Al-O" peaks at ~40 ppm & 65 ppm.

27 ALMAS NIMP Spectr

ω_i=15 kHz BNL-1: AIH,

packed in A d1=0.1 s

Cross-Polarization (CP) MAS Spectra With Protons

- To assist in observing dilute spins
 - (Pines, et al., J.Chem. Phys. 1973, Stejskal, et al., J. Magn. Reson. 1977.)
- To obtain information on spins that are close in space.
- One of the most widely used techniques in solid-state NMR (However, rarely applied to MH_x until the last few years).

No ¹H neighbors => No CP signal from X

MAS-NMR Spectra for As-Prepared LiBH₄

NIST synthesized ⁷Li¹¹BH₄ sample compared to natural isotope abundant LiBH₄ from Alfa-Aesar.

- (a) ¹H MAS NMR has LiBH₄ peak at -0.3 ppm with shoulder at ~1 ppm in ⁷Li¹¹BH₄ from B(OH)₃ impurities
- (b) ⁷Li MAS NMR Spectra where LiBH₄ peak is at -1.2 ppm.
- (c) ¹¹B MAS NMR spectra. The expanded view shows low level peaks from impurities (i.e., B(OH)₃ and B₂O₃). The main peaks for BH₄⁻ species occur at -41.3 ppm for the central transition (-1/2↔1/2) of ¹¹B (I=3/2), with spinning sidebands over about 800 ppm range from the satellite transitions.

M. R. Hartman, et al., J. Solid State Chem. 180 (2007) 1298-1305.

XRD of LiBH₄ (Aldrich) Vacuum Desorbed to 500 °C @ JPL

Comments: (1) no boron phases detected, (2) LiH seen, (3) LiOH may be from air leaks into XRD cell, (4) Li metal seems unlikely but possibly Li_2O . (Internal Si reference)

NMR: Formation of B_nH_n type complexes?

MAS-NMR Spectra for Samples: Dr. S. S. Jalisatgi (U. Missouri-Columbia)

¹¹B NMR spectra after hydrogen desorption reactions of LiBH₄:

- a) LiBH₄ (as received, Sigma-Aldrich), b) desorbed at 400 °C,
- c) desorbed at 500 °C, d) desorbed at 500 °C under vacuum,
- e) elemental boron in amorphous phase (Sigma-Aldrich),
- f) ¹¹B MQMAS spectrum of sample c),
- g) ¹¹B MQMAS spectrum of sample d). Spinning side bands are marked with *. The dashed line in 2D MQMAS spectra is the chemical shift axis.

MAS-NMR determined phase formation and reversibility in Destabilized LiBH₄/MgH₂:

$"MgH_2 + 2LiBH_4 = 2LiH + MgB_2 + 4H_2"$

(J. J. Vajo, et al., J. Phys. Chem. B 109 (2005) 3719)

⁷Li, ¹¹B and ¹H MAS-NMR gave expected phases with variation in hydrogen contents

Samples	Code	Treatment	Comments
LiH+MgB ₂	LCS-55	As ball milled	From J. Vajo [HRL]
LiBH _x +MgH ₂	LCS-55: RX-1	Absorbed H ₂	Saturated hydrides
$MgB_2 + LiH + LiBH_x$	LCS-55: RX-2 + SiO ₂ Powder	Desorbed H ₂ : diluted for better MAS-NMR	Incomplete desorb reaction noted

¹¹B MAS & CPMAS of Desorbed LCS-55 RX-2

⁷Li MAS NMR spectra of LCS-55 RX-2.

•LCS-55-RX-2 shows two components, sharp and broad, both showing very slow relaxation rate.

The signal at ~ 0 ppm is a signature of LiH. The longer delay time (10,000 s) improved the signal intensity dramatically, indicating the long T_1 relaxation behavior of LiH - as expected.

Investigation of the "ScH₂ + 2LiBH₄ = 2LiH + ScB₂ + 4H₂" Destabilization Reaction predicted by Alapati, JALCOM 446-447 (2007) 23 MAS-NMR Spectra: As Milled & Reacted

<u>Summary</u>: Desorption did Not follow the destabilized process of forming ScB_2 . Had only partial decomposition of $LiBH_4$ into LiH + "B" phases with little reversibility indicated following attempted absorption reactions.

Solid State NMR is a powerful & versatile method to assess properties of hydrogen storage materials – especially the complex metal hydrides.

This talk illustrated usefulness of multi-nuclear MAS, MQMAS, and CPMAS spectra of protons and host nuclei in borohydrides.

•Monitor phase compositions and reactions for both hydrogen desorption and absorption reactions.

•Identified & characterized " $B_{12}H_{12}$ species" as being the dominant intermediate formed during H₂ desorption from several borohydrides.

18

Hwang, et al., J. Phys. Chem. C. 112 (2008) Web Release Date: 13-Feb-2008; (Letter) DOI: 10.1021/jp710894t