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What Happens when Borohydrides are Heated?
(1)LiBH4 → LiH + B (amorphous) + 1.5H2↑

(2) M(BH4)n → MHx + n“a-B” + (2n-x/2)H2↑
Several studies have indicated various intermediate phases

Hypothetical candidates: “LiBH3”, “LiBH2”, and “LiBH”

Boron phases mostly NOT identifiable via XRD/NPD (“Amorphous”)

During desorption of LiBH4, “polyboranes” were recently suggested [1,2] from 
First Principles Theory & Raman spectroscopy as actual phases that formed!

1.  S. Orimo, et al., APL 89 (2006) 021920
2.  N. Ohba,et al., PRB 74 (2006) 075110
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NMR for Complex Metal Hydrides

B, N, Al, ..

H

H

M
(Li, Na, Ca..)

H M

•Element specific
•Non-destructive
•Quantitative
•Well suited for short range orders –
chemical bonding, coordination 
geometries,..
•Multinuclear Approach: Phase 
Identification (CS, Quadrupole 
Interaction)
•Spin-Spin correlation : Connectivity 
information (dipole coupling)-CPMAS

I=1/2: 1H, 15N, …
I=1 : 2H, 6Li, …
I=3/2 : 23Na, 7Li, 11B, …
I=5/2 : 27Al,25Mg, …
I=7/2 : 45Sc, 43Ca, … 4



NMR Studies of M-H Systems
• R.G. Barnes, “ NMR in Metal Hydrogen Systems” Topics in 

Applied Physics, Vol 73 (1997), pp 93 – 151.
• R. C. Bowman, Jr. and S.-J. Hwang, “Nuclear Magnetic 

Resonance Studies of Hydrogen Storage Materials”, Mater. 
Matters 2(No.2), 29 (2007).

General Review of High Resolution Solid State NMR
• K. J. D. MacKenzie and M. E. Smith, Multinuclear Solid-State 

NMR of Inorganic Materials (Pergamon, Amsterdam, 2002).
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High Resolution Solid State NMR

H= ħωΙ
=Hz + Hcs + HD + HQ

ωΙ ~ ωiso + ωaniso

Removing Anisotropic Interactions to Sharpen Spectra
(Pulse manipulations, mechanical rotations)
MAS, MQMAS, CPMAS

Bo

θ

ωaniso~(3cos2θ  −1)
Magic Angle:
<3cos2θ−1>= 0 when θm=54.7º [“Magic Angle”]
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Magic Angle Spinning (MAS)
(27Al @ 130.35 MHz for α-AlH3)

Rotor axis

Bo

1500 1000 500 0 -500 -1000 -1500
ppm

LMg4Al1E1A 27Al MAS NMR Spectra
d1= 40 s
α−AlH3 Dow

ωr=35 kHz

ωr=14.5 kHz

ωr=8 kHz

ωr=0 kHz

NMR rotors
(7, 4, 2 mm)

θm

Commercial probe (~1 mm) ~ 70 kHz

100 80 60 40 20 0 -20 -40 -60
ppm

LMg1Al2
ωr=15 kHz

d1=0.1 s

BNL-1: AlH3

packed in Ar

27Al MAS NMR Spectra
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H=Hz + Hcs + HD + HQ

Multiple Quantum (MQ) NMR Method

HQ= IVI
II

eQ
⋅⋅

− h)12(2

+Z-filtering, Amoureux and Fernandez, JMR 1996

+

-
-Q
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100 80 60 40 20 0 -20 -40 -60
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LMg1Al2
ωr=15 kHz

d1=0.1 s

BNL-1: AlH3
packed in Ar

27Al MAS NMR Spectra

 
Main peak @ ~6 ppm from α-AlH3 with two 
 “Al-O” peaks at ~40 ppm & 65 ppm. 

27Al Triple Quantum (3Q) MAS spectrum: 
showing the presence of 3 distinctive sites 
in α-phase AlH3 with two oxide impurities.

α-AlH3

Electrostatic gradients



Cross-Polarization (CP) MAS Spectra With Protons

• To assist in observing dilute spins
– (Pines, et al., J.Chem. Phys. 1973, Stejskal, et al., J. Magn. Reson. 1977.)

• To obtain information on spins that are close in space.
• One of the most widely used techniques in solid-state NMR 

(However, rarely applied to MHx until the last few years).

1H-decoupling
π/2

H

X
 

CP

CP

X
H

No 1H neighbors => No CP signal from X
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MAS-NMR Spectra for As-Prepared LiBH4

 (a) 
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LiBH4

7Li11BH4
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7Li11BH4

LiBH4

*

40 20 0 -20 -40 -60

(c) 1H (b) 11B
BH4

-

10 5 0 -5 -10
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LBH1Li1IA
7Li MAS NMR

LiBH4

labeled

ωr=14 kHz

NIST synthesized 7Li11BH4 sample compared to natural isotope abundant LiBH4 from Alfa-Aesar.
(a) 1H MAS NMR has LiBH4 peak at -0.3 ppm with shoulder at ~1 ppm in 7Li11BH4 from B(OH)3 impurities 

(b) 7Li MAS NMR Spectra where LiBH4 peak is at -1.2 ppm.

(c) 11B MAS NMR spectra. The expanded view shows low level peaks from impurities (i.e., B(OH)3 and B2O3). 
The main peaks for BH4

- species occur at -41.3 ppm for the central transition (-1/2↔1/2) of 11B (I=3/2), with 
spinning sidebands over about 800 ppm range from the satellite transitions.

M. R. Hartman, et al., J. Solid State Chem. 180 (2007) 1298-1305.
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XRD of LiBH4 (Aldrich) Vacuum Desorbed to 500 ºC @ JPL

Comments: (1) no boron phases detected, (2) LiH seen, (3) LiOH may be from air leaks 
into XRD cell, (4) Li metal seems unlikely but possibly Li2O. (Internal Si reference)
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15 10 5 0 -5 -10
ppm

1H MAS NMRLBH6H1A1
ωr=14 kHz
LiBH4& desorption
d1=1000 s

LiBH4 (Aldrich)
Des at 400 C
Des at 500 C (Top)
Des at 500 C (Vac)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60
ppm

11B NMR SpectraLBH6B1A1

LiBH4

Des 400 

Des 500-Top 
Des 500-Vac 

x 2

NMR Spectra of Desorbed LiBH4 Samples
•400 oC : CIT-24
•500 oC-Top: CIT-29 Top
•500 oC-Vac: CIT-37; Vacuum to 500 oC

10 0 -10 -20 -30 -40 -50 -60
ppm

LBH5B2C 11B NMR Spectra

LiBH4/H2O

CIT-24: des-LiBH4/H2O

LiBH4-des/H2O

In the case of intermediate ([B12H12]2- anion) formation
12LiBH4 →Li2B12H12 + 10 LiH + 13H2 ↑ : 54.2% H loss

→ 12B + 12LiH + 5H2↑ :  20.8% H loss – total 75% of H
→ 12B + 12Li + 6 H2 :  25 % H loss – total 100% of H

[B12H12]
2-

[BH4]
-

B

HR-NMR Liquid Solution
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Solid MAS
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NMR: Formation of BnHn type complexes?

Closo-boranes

MAS-NMR Spectra for Samples: Dr. S. S. Jalisatgi (U. Missouri-Columbia)

K2 [B12H12]
2-

K2 [B10H10]
2-

22_

40 20 0 -20 -40 -60 -80
ppm

LBH4B3A
ωr=13 kHz

11B NMR Spectra

K2BnHn
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11B NMR spectra after hydrogen desorption reactions of LiBH4:
a) LiBH4 (as received, Sigma-Aldrich), b) desorbed at 400 ºC, 

c) desorbed at 500 ºC, d) desorbed at 500 ºC under vacuum, 

e) elemental boron in amorphous phase (Sigma-Aldrich), 

f) 11B MQMAS spectrum of sample c), 

g) 11B MQMAS spectrum of sample d). Spinning side bands are marked with *. The dashed line in 
2D MQMAS spectra is the chemical shift axis.

MQMAS a-B PhaseMQMAS 500oC 
Desorbed LiBH4

[BH4]
-



MAS-NMR determined phase formation and reversibility in Destabilized LiBH4/MgH2:

“MgH2 + 2LiBH4 = 2LiH + MgB2 + 4H2”
(J. J. Vajo, et al., J. Phys. Chem. B 109 (2005) 3719)

7Li, 11B and 1H MAS-NMR gave expected phases with variation in hydrogen contents

Samples Code Treatment Comments

LiH+MgB2 LCS-55 As ball milled From J. Vajo [HRL]

LiBHx+MgH2 LCS-55: RX-1 Absorbed H2 Saturated hydrides

MgB2 + LiH + 
LiBHx

LCS-55: RX-2 + 
SiO2 Powder

Desorbed H2: 
diluted for better 
MAS-NMR

Incomplete desorb 
reaction noted

15
150 100 50 0 -50 -100

ppm

LBH1B1H1A
ωr=14 kHz

11B NMR Spectra

LCS-55
LiH+ MgB2

x1/100
LCS-55-RX-1-NMR
LiH+MgB2

LCS-55-RX-2
LiH+MgB2 (desorbed)

MgB2

400 300 200 100 0 -100 -200 -300 -400
ppm

mixed with SiO2 (3:2)

LBH1H1F

ωr=14 kHz

1H MAS NMR Spectra

LCS-55
LiH+ MgB2

LCS-55-RX-1-NMR
LiH+MgB2

x 1/40

LCS-55-RX-2
LiH+MgB2

50 0 -50
ppm

LBH1Li1H
7Li MAS NMR

LCS-55
LiH+ MgB2

x1/2

ωr=14 kHz

x1/10
LCS-55-RX-1-NMR
LiH+MgB2

LCS-55-RX-2
LiH+MgB2 (desorbed)



11B MAS & CPMAS of Desorbed LCS-55 RX-2 7Li MAS NMR spectra of LCS-55 RX-2.

400 200 0 -200 -400
ppm

ωr=12 kHz
Bloch decay
CPMAS; p15=500us

MgB2
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LiBH4

Li2B12H12

20 10 0 -10 -20

ppm_6Li

d1=50s, p15=1ms
d1=10000s, p15=1ms

6Li CPMAS NMR spectra of LCS-55 RX-2.
The signal at ~ 0 ppm is a signature of LiH. The 
longer delay time (10,000 s) improved the signal 
intensity dramatically, indicating the long T1
relaxation behavior of LiH - as expected.

30 20 10 0 -10 -20 -30
ppm

LBH1Li1H1
7Li MAS NMR

ωr=14 kHz
LCS-55-RX-2
LiH+MgB2 (desorbed) d1=2 sec

20 s
100 sec
4000 s

LiBH4

LiH

•LCS-55-RX-2 shows two components, sharp and 
broad, both showing very slow relaxation rate.



400 200 0 -200 -400
ppm

11B NMR Spectra

LiBH4

after desorption

as BM

20 0 -20 -40 -60
ppm

11B NMR Spectra

Bloch Decay
CPMAS (0.1 ms)

a b 

1200 800 400 0
ppm

45Sc MAS NMR

after desorption

as BM

ScB2

4 3 2 1 0 -1 -2 -3 -4
ppm

6Li MAS NMR

after desorption

as BM

c d 

MAS-NMR Spectra:  As Milled & Reacted

(No predicted ScB2 Phase seen!)

Detected only ScH2

Some LiBH4 has converted into “B12H12”
species and  “elemental boron”

Investigation of the “ScH2 + 2LiBH4 = 2LiH + ScB2 + 4H2”
Destabilization Reaction predicted by Alapati, JALCOM 446-447 (2007) 23

150 100 50 0 -50 -100
ppm

LBH2B3A

ωr=12~14  kHz

11B NMR Spectra

LiBH4

LiBH4/ScH2 (Des/Abs)

x1/5as BM

ScB2
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Summary:  Desorption did Not follow the destabilized process of forming ScB2.  
Had only partial decomposition of LiBH4 into LiH + “B” phases with little reversibility 
indicated following attempted absorption reactions. 
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Summary & Conclusions
Solid State NMR is a powerful & versatile method to assess properties of 
hydrogen storage materials – especially the complex metal hydrides.

This talk illustrated usefulness of multi-nuclear MAS, MQMAS, and 
CPMAS spectra of protons and host nuclei in borohydrides.

•Monitor phase compositions and reactions for both hydrogen 
desorption and absorption reactions.

•Identified & characterized “B12H12 species” as being the dominant 
intermediate formed during H2 desorption from several borohydrides.

Hwang, et al., J. Phys. Chem. C. 112 (2008) Web Release Date: 13-Feb-2008; (Letter) DOI: 10.1021/jp710894t

http://dx.doi.org/10.1021/jp710894t

