Getting the MOST out of your combustion system

Brian Kelly General Manager, Industrial Sales Hauck Manufacturing Company

- Getting the MOST
- **MOST** Production
- MOST Quality
- MOST for your fuel \$/MOST energy efficiency
- When you consider these issues, your combustion system in combination with your kiln/furnace is the key in acheiving these objectives.

FIRST, take a good hard look at your present system/situation.

MAINTAIN YOUR EQUIPMENT

- Burner tuning
- Combustion air filtering
- Kiln maintenance
- Controller tuning
- Training/Record keeping

BURNER TUNING

Air/Fuel Ratio

- Over time burner settings (air/fuel ratio) will drift, because of component wear, temperature, etc..., this can ultimately affect:
 - Efficiency/Fuel Usage
 - Product Quality

BURNER TUNING

Example: A burner's air/fuel ratio drifts to 30% excess air from it's initial setting of 10%. Readjustment back to 10% will result in a 15% energy savings.

			Theoen	
	🚾 Energy Saving			
	File Help			
ample: A rner's air/fuel	Current Units US-Units SI-Units SI-Units	Case I Average Natural Gas Blast Furnace Gas Butane	Case II Average Natural Gas Blast Furnace Gas Butane	
io drifts to		Enter Combustion Condit	ion data for both cases	
	Combustion Air Temperature	60.0 F	60.0 F	
% excess all	Exhaust Temperature	1900 F	1900 F	
m it's initial	Excess Air (%)	30	10	
tting of 10%	Oxygen in Combustion Air (%)	20.9	20.9	
	Flue Gas Recirculation (%)	0	0	
eadjustment	Flue Gas Recirculation Tempera	ture 60.0 F	60.0 F	
ck to 10%	Fuel Preheat Temperature	60.0	60.0	
I result in a				
% energy		Calculate Energy	y Savings	
vinas	Available Heat Case I (%)	38.3		
virigo.	Available Heat Case II (%)	45.2		
	Energy Saving in Case II (%)			
02.11.2006 H.Autor			Drint Durations	u al
Copyright © 2006 Eister Group All Ri		Energy Cost	FILLFIEWEW E	110

Combustion Air Filtering

- Unfiltered Systems
 - Overtime dust/particulate will build up in pipes/burners
 - Increased system pressure drop (ie. smaller pipe)
 - Less air to burner = Less air to system = Less input
 - = Less production = Wasted energy
- Filtered Systems
 - Regular maintenance schedule based on operating conditions.

Kiln Maintenance

The objective: Contain heat in the kiln to heat product/minimize heat losses.

- Openings
 - Radiation losses = wasted energy
 - Air infiltration = wasted energy
- Refractory
 - Poor refractory maintenance=wall losses=wasted energy
- Pressure Control
 - Poor/No pressure control = wasted energy/poor uniformity

Controller Tuning

Tuning of controllers

- Tighter control = less fuel usage/tighter uniformity
 - Best controller can't overcome a poorly tuned/designed combustion system

Training/Record Keeping

Training

Basic combustion training/knowledge

Record Keeping

- Baseline reference for optimum operation.
- Easy to check/adjust to baseline.
- Analysis can be done.

		G	Н		J	К	L	
			Gas		Burner			-
			Orifice		Inlet Air			
		BURNERS BIC	٨P	Gas Flow	Pressure	Air Flow	% Excess	
	8	80L	("w.c.)	(scfh)	("w.c.)	(scfh)	Air	
	9	PREHEAT 3						
	10	R11	3.0	262	16.1	2717	3.7	
	11	R12	3.0	262	16.1	2717	3.7	
	12	R13	3.0	262	16.1	2717	3.7	
	13	R14	3.0	262	16.1	2717	3.7	
	14	PREHEAT 4						Ξ
	15	R15	6.0	371	32.1	3836	3.5	
	16	R16	6.0	371	32.1	3836	3.5	
	17	R17	6.0	371	32.1	3836	3.5	
	18	R18	6.0	371	32.1	3836	3.5	
	19	PREHEAT 5						
	20	R19	6.0	371	32.1	3836	3.5	
	21	R20	6.0	371	32.1	3836	3.5	
	22	R21	6.0	371	32.1	3836	3.5	
	23	R22	6.0	371	32.1	3836	3.5	
	24	PREHEAT 6						
	25	R23	6.0	371	32.1	3836	3.5	
	26	R24	6.0	371	32.1	3836	3.5	
	27	R25	6.0	371	32.1	3836	3.5	
	28	R26	6.0	371	32.1	3836	3.5	
	29	PREHEAT 7						
	30	R27	6.0	371	32.1	3836	3.5	
	31	R28	6.0	371	32.1	3836	3.5	
	32	R29	6.0	371	32.1	3836	3.5	
ls	33	R30	6.0	371	32.1	3836	3.5	~
	I4 4	→ M \ Sheet1 / Sł	heet2 / She	eet3 /	<			

EQUIPMENT AND CONTROL

served. Elster and its logo, are trademarks of Elster Group

Sep 21, 2005 FLUENT 6.1 (3d, segregated, spe5, ske)

Equipment and Hardware

Equipment/hardware on the kiln/furnace

- Is the equipment right for the job?
- Equipment age: Many combustion systems are 15 years or older.
- Burner and Component advancements/improvements:
 - Improved mixing
 - Improved emissions
 - Improved turndown
 - Improved heat transfer
 - Tighter air/fuel ratio control

System Control

Control Systems/Methods

- Best burner + poor/inadequate control scheme = poor performance.
- Advancements in control technologies can assist in system control: Precision and reaction.
- Control of the combustion system has to address the application/product requirements. The design of the system will dictate:
 - Temperature Uniformity = Product Quality
 - Efficiency = Lower Fuel Costs
 - Maximum Heat Transfer = Optimum Production

Fuel-Only/Excess Air Control

Fuel-Only/Excess Air Control

Advantages

- Simple
- Less expensive
- Maintains high exit velocity/temperature uniformity Air

<u>Disadvantages</u>

- Versatility
- Thermally inefficient
- Burner must be excess air capable

Ratio/Cross-Connected/Pressure Balanced

elster

Hauck

Ratio/Cross-Connected

<u>Advantages</u>

- Simple/relatively easy set-up
- Generally inexpensive
- Fuel efficient

<u>Disadvantages</u>

• Temperature uniformity will suffer with reduction in burner exit velocity with turndown

- Specialized type of cross-connected control
- Frequency modulation instead of amplitude modulation
- Special air solenoids and ratio regulators for each burner.
- Burners fire high-low or high-off
- Can be used with any burner capable of cycling

- Burners operate at either high fire or low fire.
 - High and low flows are fixed and repeatable (for reliable and almost unlimited turndown).
- Heat input is controlled by varying the amount of time the burners are pulsed off.
 - Individual burner "high fire " times are sequenced so all burners "take their turn" at high fire.

<u>Advantages</u>

- Reduces fuel usage
 - Reduces excess air required for uniformity & turndown.
 - Increases heat transfer
- Reduces emissions
 - Less fuel input required = A lower emissions potential.
 - Better "natural" flue gas re-circulation.
- Increases/promotes temperature uniformity without excess air
- Uniform piping and equipment to every burner
- All burners are set identically (high/low fire)
- Electronic zoning makes changes easy
- Pulse logic can be tailored for application needs = Flexibility

<u>Disadvantages</u>

- Hardware costs
 - Each burner has air and gas controls valves so upfront capital costs are higher than traditional control systems
 - Control system can be more expensive

Efficiency

How can fuel usage be reduced further beyond the methods discussed?

Air Preheat

- How does heat recovery save fuel?
 - Preheating the air reduces the heat required to attain exit gas temperature.
 - Flame temperature is increased.
 - More heat is now available to heat the load instead of the air.

PREHEATED AIR

PREHEATED AIR

How do you preheat the air?

Recuperation

- Centralized Recuperator/Heat Exchanger
- Self-recuperative burners

Regeneration

• Paired Regenerative burners

Air preheat will be seen more often as fuel prices continue to rise and CO_2 (carbon) emissions become increasingly regulated.

There is no one burner, one control method, or one system that will act as a magic wand for increased productivity, improved product quality and reduced fuel costs. There are advantages and limitations with all system types.

In the end, the question remains: What change, upgrade, or improvement will be the best choice to achieve <u>your</u> goals in <u>your</u> application?

Thank you Questions??

Copyright © 2006 Elster Group All Rights Reserved. Elster and its logo, are trademarks of Elster Group