Utilization of Scrubber Waste in Dry Cast Concrete Products

Presented by: Tanya Turpin **Brad Cobbledick**

Company: Brampton Brick Limited

Presentation Outline

Background Purpose Batch Design

- Mix Design
- Materials
- Machinery

Physical Properties Measured

- Colorimeter
- Compression
- Absorptions

Plant Locations

Background

Brampton Brick Scrubber Limestone Waste

•100 Tons per Month

Peel Block Concrete Plant Raw Materials

•1280 Tons per Month

Substituting Raw Material

•7%-8% •89.6 Tons- 102.4 Tons

To manufacture a durable concrete product using limestone waste from a scrubber, as a substitute for a portion of the aggregates.

Raw Material

Fine Aggregate

Coarse Aggregate

Scrubber Waste

Sieve Analysis Raw Material

Median Particle Diameter

0.56 Median ^{0.54} 0.52 0.52 0.5 Diameter 0.48 (µm) 0.46

Sample Date

Experimental Results of Scrubber

Limestone Addition Sieve Analysis

Laboratory Scale Batch Design

Table 2: Laboratory Batch Design

Product	Total Cementitious Material (g)	Total Fines (g)	Total Coarse (g)	Total Aggregates (g)	Batch Total (g)
Masonry	315	2100	2700	5000	5315

Table 1: Peel Block Aggregate Percentages

Product	Fines in	Coarse	Cementations
	Batch	in Batch	Material in Batch
	(%)	(%)	(%)
Masonry	54.6	39.1	6.3

Machinery

Diagram 1: Laboratory Compression and Vibration Machine

Final Product

Concrete Puck

Physical Properties of the Final Product

Colorimeter Data

Compressive Strengths

Water Absorptions

Colorimeter Data

Diagram 1: 3-D Colorimeter Wheel

Lightness

-L: Black

Measure of brightness.

Hue

Represented as "L".

Measure of colour.
d
Represented as "a".

Chroma Measure of intensity or charity.

Represented as "b".

Color Difference

Absolute Error = ΔE

 $\Delta E = \sqrt{(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2}$

Color Difference Between Samples

Compressive Strength vs Limestone Addition

Compressive Strength (mPa)

24 hr Cold Water Absorption

Water Absorption (%)

5 hr Boil Water Absorption

Saturation Coefficient

Future Trials

Replace Screening with the Sand

Freeze -Thaw

• Plant Trial

Acknowledgements

To Paul-Francis D'Arcey and Brad Cobbledick for their assistance and suggestions throughout the process.

