Hydrogen Delivery/Safety

Air Products and Chemicals, Inc.

B. B. Bonner

The American Ceramic Society and ASM International Conference Material Innovations in an Emerging Hydrogen Economy 25 February 2008

Air Products at a Glance

- US\$10B in sales
- Diverse markets and geographies
- Over 50% of our revenues are outside U.S.

FY07 Consolidated Sales

By Reporting Segment

Leadership in Hydrogen Fuel Infrastructure

- Worlds largest producer of merchant hydrogen
- Our capacity ~1.75 million TPY Could support 7-8 million vehicles
- Active since 1993
 - Built over 80 hydrogen station projects
 - Exceeded 50,000 fuelings
 - in 12 countries
- Strong and broad IP position.

Emerging Hydrogen Economy Infrastructure Requirements

H₂ Production

Delivery

Onsite Reformers

Electrolyzers

Gas Separation & Purification Devices

Central H₂ Production Light weight Vessels

> Metal Hydrides

> > Chemical Hydrides

Carbon

Distribution

Compression

Dispensing Systems

Storage

Total Safety Philosophy

- Nothing is more important than safety...not production, not sales, not profits.
- All accidents and injuries are preventable...they are not inevitable.
- Safety is a management responsibility and safety can be managed
- Safety is an individual responsibility...and a condition of employment.

Total Safety Philosophy

- Safety is a way of life around the clock.
- Every task must be performed with a concern for safety...for ourselves, our fellow employees, our contractors, our visitors, our customers, and the communities in which we operate.

- A commitment to Total Safety is a commitment to doing things right the first time.
- Ultimately, this results in elimination of injuries and optimization of all activities.

Properties – H2 is a Fuel

Flammable Range Detonable Range **4 - 74% by vol. in air**

18.3 – 59% by vol. in air

- Wide flammability range
- Low ignition energy
- Tendency to ignite before large energy accumulation
- Very hot, invisible flame (pale blue at night)
- Importance of ventilation
- Siting requirements away from ignition sources and compounding hazards

Properties Comparison

		<u>H2</u>	<u>NG</u>	<u>Gasoline</u>
1-	Color	none	none	yes
2-	Toxicity	no	no	yes
<mark>3</mark> -	Odor	odorless	mercaptans	yes
4-	Specific Gravity	0.07	0.424	liquid
5 -	Environment - Leak	none	none	CnHm
	Impact - Fuel	none	CO2 / NOx	CO2 / NOx
<mark>6</mark> -	Diffusion Coefficient (cm3/s)	0.61	0.15	liquid
7-	Flame Temperature(C)	2318	2148	2200
<mark>8</mark> -	Flammablility Range (% in air)	4% - 75%	5.3% - 15%	1.4% - 7.6%
9-	Ignition energy (milli Joules)	0.02	0.29	0.2
10-	Auto Ignition Temp. (C)	520	< 500*	440
11-	Heat Value (kJ/kg)	119,972	50,020	42,847
12-	Energy Density (MJ/Nm3)	10.783	35.882	104.4

Ignition Energy of H₂, CH₄ and Gasoline with Air

Flammability Limits of H₂ Are Seven Times Wider Than CH₄

Delivered Hydrogen

Gas Pipeline

Liquid Tank Trailer

Gas Tube Trailer

Mobile Fueler

Total U.S. Hydrogen Production: Approx. 30 Billion SCFD

Hydrogen Consumed Where Produced: 97%

11

© Air Products and Chemicals, Inc. 2008

Hydrogen Pipeline Positions

Pipeline Standards and Regulations

- CFR 49 Part 192 and as amended by delegated state agency.
- Air Products standards employ minimum design to Class 3 location except for very remote unpopulated areas and typically exceed the requirements of Part 192.
- Environmental Impact Studies designate additional design considerations.
- Local jurisdictions (City, Township, Parish, County, etc.) have imposed additional requirements beyond basic regulatory requirements.

Pipeline Safety

- Hydrogen Industry Has 500 Miles in U.S.
 - Conventional low-carbon steel pipelines.
- Small variation in pipeline pressure pipe (low cyclic stress).
- Existing natural gas pipelines have been successfully converted to hydrogen.
- No Fires at Hydrogen Pipelines in 35 Years at Air Products

Excess Flow Valve (EFV)

Liquid Hydrogen Distribution

Truck in *liquid* hydrogen delivered at about –423°F and 100 psig.

- SS inner vessel
- CS outer jacket
- Insulation space
- No product release in shipping

excellent safety record

Liquid Hydrogen Trailer Safety

- Trailers With Armored Type Construction
 Inner Tank With Outer Thick Steel Jacket
- 70 Million Gallons of Liquid H2 / Year
- 8 Million Miles / Year
- 160 Million Miles Since Inception Without Loss of Liquid Hydrogen onto the Road
- 1996 NASA Safety Award Winner
 - 200 Million Pounds of Liquid H₂ Over 25
 Year Period Without a Significant Incident
- Vehicle Accidents Do Occur

Hydrogen Distribution

Standard Tube-Trailer
 Delivered at ~ 2600 psig
 300 kg capacity

Mobile Fueler • Totally self-contained • 350 Bar fueling • DOT approved

Truck in gaseous hydrogen

Hydrogen Fueling Station

- Compression and storage modularized
- Hydrogen dispenser typically separate
- Designed for any type of H2 supply mode
- Designed to service small to large fleets of autos and buses
- Wide range of flows
- Electric Drive Compressor

PRODUCTS

Hydrogen Fuel Dispensing Stations

General Permitting Comments

Early systems

- Engineered to order, remote.
- Sometimes helped with permitting
 - Little public interaction
- Understood to be prototypes/R&D

Newer systems

- "Real" usage
 - Follow normal process
- More rigorous review
- But more knowledge/Codes

Importance of Codes & Standards

Improves Safety

- Paramount importance to all
- Provides Education to AHJ (Authority Having Jurisdiction), such as CGA or NFPA pamphlets

Provides Consistency

- Assists with Permitting, as helps AHJ's make decisions
- Levels playing field for all participants
- Key to long-term liability issue.

H₂ Fueling Safety -Codes, Standards, and Training

- Adhere to Industrial Codes
 ASME BPVC, ASME B31.3, NEC (NFPA 70)
- Adhere to Hydrogen Codes
 NFPA 55, CGA Guidelines
- Apply CNG Fueling Codes Where Applicable
- Active Role in Codes and Standards Development
 SAEJ2600 & J2601, NFPA 50, NFPA 52
- Provides Comprehensive Safety Training
 Dispenser, Hydrogen, KnowH₂ow®.

100 Years of Gasoline Fueling Public Dispensing – 180,000

Safety Maintained

Hydrogen Fueling in Infancy Dispensing ~ 100 today; 10,000 in ? years

© Air Products and Chemicals, Inc. 2008

Summary

The Hydrogen Delivery Infrastructure Has Evolved to Meet the Specific Needs of a Hydrogen Economy.

Safety Risks Must Be Managed

- Important Role of Good Engineering Design and Work Processes
- Important Role of Codes and Standards
- Industry Stakeholders and The Public Must Gain Confidence That Hydrogen Supply, Delivery, Fueling, and Driving Are As Safe (or Safer) As Conventional Fuels
 - Achieve Thru Demonstrations
 - Improved Design to Make Differences Between Fuels Transparent
- Today's petroleum fuel infrastructure was not built in a day....and doesn't need to be replaced in a day! We are embarking on running a marathon and not a sprint.

Thank you <u>www.airproducts.com/h2energy</u>