Tritium: <u>A MicroPower Source for On-Chip Applications</u>

Nazir P. Kherani¹, Baojun Liu², Stefan Zukotynski¹, Kevin P. Chen²

¹Department of Electrical & Computer Engineering and Department of Materials Science & Engineering University of Toronto, Toronto, Ontario, M5S 3G4

²Department of Electrical and Computer Engineering University of Pittsburgh, Pittsburgh, PA, 15261

1

Invited Presentation at

Materials Innovations in an Emerging Hydrogen Economy

February 24-27, 2008, Cocoa Beach, Florida Organized by the American Ceramic Society and ASM International Endorsed by National Hydrogen Association and Society for Advancement of Material and Process Engineering

Outline

- Tritium: Basics
- Tritium: A MicroPower Source
 - Beta-Voltaics
 - Beta-Powered MEMS
 - Beta-Luminescence
 - Cold Electron Source
- Tritium: A Characterization/Diagnostic Tool
 - Tritium Tracer Studies
 - Tritium Effusion Studies
 - Defect Dynamics
 - Particle Sensor Applications
- Summary

Tritium

- Isotope of Hydrogen
- ³H \rightarrow ³He⁺ + β^- + $\overline{\nu}_e$ + 18.6 keV
- Nuclear Half-life: $t_{\frac{1}{2}} = 2$

t $_{\frac{1}{2}}$ = 12.32 years λ = 1.78 x 10⁻⁹ s⁻¹

- Activities: 1 Ci = 3.7 x 10¹⁰ Bq 1 Ci = 0.39 std cc 1 Ci = 33.7 μW
- Biological: Half-life: 10 days ALI*: 80 mCi

*Annual Limit on Intake

- Chemically: Identical to ¹H Mass effect (~3amu) Beta catalysis
- Range (max): 4.5 6 mm in air
 5 7 micron in water

Producers & Users

- Producers of Tritium
 - Ontario Power Generation (OPG)
 - ~1 kg/year
 - Korean Electric Power Company (KEPCO)
 - USA
 - 225 kg produced since 1955
 - 12-75 kg stockpiled
 - Russia
 - India, Pakistan

Tritium Producing Burnable Absorber Rods (TPBARs) (Lithium Rods in a Light Water Reactor)

> Tritium Lighting

- Users of Tritium
 - Pharmaceutical Research (~100g)
 - Tritium Lighting Industry (~30g)
 - Fusion Studies
 - Magnetic Confinement (ITER ~40g)
 - Inertial Confinement
 - Other

Tritium in Natural Waterways

D(n. 2)

Outline

- Tritium: Basics
- Tritium: A MicroPower Source
 - Beta-Voltaics
 - Beta-Powered MEMS
 - Beta-Luminescence
 - Cold Electron Source
- Tritium: A Characterization/Diagnostic Tool
 - Tritium Tracer Studies
 - Tritium Outgassing & Effusion Studies
 - Defect Dynamics
 - Particle Sensor Applications
- Summary

BetaVoltaics

- 1951, Ehrenberg, Lang, & West:
 <u>– Electron-voltaic effect</u> (on a Se device)
- 1956, Rappaport
 - First direct conversion betavoltaic device (planar configuration, 0.4% efficiency)
- 1968, Klein
 - Band-gap dependence of electron-hole pair (ehp) generation by ionizing radiation
- 1974, Olsen
 - Theoretical treatment of betavoltaic conversion efficiencies for a variety of semiconductor materials
- 1970s, D W Douglas Laboratories
 - Planar silicon betavoltaics fueled with ¹⁴⁷Pm
 - Efficiencies ranged in 0.7 to 2%

Renewed Interest in Radioisotope Batteries

- Continual miniaturization of electronic and electromechanical systems
 - Decreased power consumption
- Integrated Power Sources (SoC)
- High energy densities compared to chemical batteries
- Operation in extreme environments

 For example, temperatures of -100 to +150 °C

MicroPower Applications

Sensor/Memory Chips Power requirement: 1-10 μ W

SoC Microsystem Power requirement: 1-10 mW

Non-volatile Memory

Electrostatic actuation of MEMS/NEMS

Micro-gas

Analyzer

Chip-scale Navigation system

Market

• All Batteries:

\$50 billion

Target markets for betavoltaic batteries

- Oil, gas, and environmental
- Military
- Medical
- Space
- Emerging MEMS/NEMS
- Market for betavoltaics

\$1 billion +

Electron/Beta Voltaics

ehp: electron-hole pair

Choice of Radioisotope

Isotope	Eavg	Emax	Ρ	Work	T 1/2
	(keV)	(keV)	(W/g)	(kWh/ 4y/g)	(yrs)
H-3	5.7	18.6	0.34	10.3	12.3
Ni-63	21	66	0.07	2.5	92
Sr-90	540	900	0.75	25	28
Pm-147	62	230	0.34	7.3	2.6

Tritium

- Low energy β- emitter (benign radioisotope)
- Low cost: \$2.5-\$4/Ci
- Long enough lifetime
- Can be immobilized in a solid matrix
- On-chip integration
- Mature (existing tritium lighting industry)

Intrinsic Tritiated Amorphous Silicon Betavoltaic Device

- Substitute tritium for hydrogen in hydrogenated amorphous silicon pin photovoltaic devices
- Tritium within the energy conversion layer
 - In contrast to betas originating from a source external to the device
- Volume source battery
 - Attained through stacking of many cells
 - In contrast to a planar surface source battery

a-Si:T Betavoltaic Device

<u>At t ~ 10 days</u>

 $I_{sc} < 0.1 \text{ nA}$

 $\frac{At t \sim 0}{I_{sc} = 0.98 \text{ nA}}$ $V_{oc} = 21 \text{ mV}$ $\eta = 0.1\%$

Kosteski, Kherani, Stradins, Gaspari, Shmayda, Sidhu, Zukotynski, *IEE Proc. Circuits Devices Syst.* **150**, *No.4*, (2003) 27-281.

a-SiH Betavoltaic Cell Powered by T₂ Gas

a-SiH Betavoltaics with ultrathin contact

At t ~ 46 *days* $\eta < 0.1\%$

pressure: 678 torr

Porous Silicon 3D Betavoltaics

- Introduce micropores in silicon through electrochemical anodization
- Create *pn* junction in the pores through diffusion of n-type dopant
- Introduce an appropriate radionuclide in the pores
- A Volume Source Battery

Gadeken, Sun, Kherani, Fauchet, Hirschman, US Patent 7250323 (2007).

3D Versus 2D Betavoltaics

Sun, Kherani, Hirschman, Gadeken, Fauchet, *Adv Mater* **17** (2005) 1230-1233.

III-V Betavoltaics

AlGaAs/GaAs Heterojunction Betavoltaics

p ⁺ GaA	\s				
ρ Al _{0.85} Ga _{0,15} As	0.01-0.03 μm				
ρ Al _x Ga _{1-x} As	0.3-0.7 µm				
n Al _x Ga _{1-x} As	2-4 μm				
n GaAs buffe	rlayer 10 µm				
ļ.					
n GaAs subst	rate 450 μm				
	contact				

Source of betas	Generate d current density µA/cm ²	Open circuit Voltage, V	Output Power, μW/cm ²	Efficiency (%)
Tritium- titanium	0.04	0.75	0.024	5.6
Tritium gas	0.76	0.91	0.55	5.8
Tritium green lamp	0.12	0.78	0.074	

Andreev, Kavetsky, Kalinovsky, Larionov, Rumyantsev, Shvarts, Yakimova, Ustinov, 28th PVSEC, 2000.

Silicon Carbide Betavoltaics

4H SiC BV Cell

1 mCi, ⁶³Ni Source (66keV) $I_{sc} = 16.8 \text{ nA/cm}^2$ $V_{oc} = 0.72 \text{ V}$ $\eta = 6\%$

4H SiC pin BV Cell

8.5 GBq, ³³P Source (249 keV) $I_{sc} = 2.1 \ \mu A/cm^2$ $V_{oc} = 2.04 \ V$ $\eta = 4.5\%$

Eiting, Krishnamoorthy, Rodgers, George, Robertson, Brockman, *Appl. Phys. Lett.*, *88* (2006) 064101.

Contact Potential Difference Betavoltaics

Air-medium CPD BV $I_{sc} = 2.7 \ nA/cm^2$ $V_{oc} = 0.5 \ V$

Solid CPD BV $I_{sc} = 5.3 nA/cm^2$ $V_{oc} = 0.16 V$

Liu, Chen, Kherani, Zukotynski, Antoniazzi, *Appl. Phys. Lett.*, **92** (2008).

MEMS: Radioisotope-Powered Piezoelectric Generator

- Self-reciprocating direct-charging cantilever
- Direct conversion of collectedcharge-to-motion energy into electrical
 - Radioisotope kinetic energy stored in the cantilever
 - Piezoelectric generator converts stored mechanical energy into electrical energy
- Overall efficiency 2.78%

Lal, Duggirala, Li, IEEE Pervasive Computing, 4, (2005), pp. 53-61.

BetaLuminescence

- 1898, Becquerel
 - Radioluminescence
 - Phosphorescence material: potassium uranyl sulphate
- 1920s, Elster, Geitel, and Cookers
 - Alpha radiation induced scintillations in ZnS.
- 1967, International Atomic Energy Agency (IAEA)
 - Standards for the use of common RL sources.
 - Most common: tritium beta-luminescence

Present

- Tritium gas lighting
- Radium ZnS:Cu paint
- Novel materials & technologies in Betaluminescence
 - Organic
 - all-organic formulation: polystyrene and fluorescent dye
 - organic system with inorganic phosphor
 - Inorganic
 - semiconductor pn junctions
 - incorporation of tritium in solid matrix: amorphous materials, hydrides, carbon nanotubes, zeolites

Cold Electron Source

Tritium immobilized in a solid

Materials

- Tritiated metal tritides
- Tritiated amorphous silicon
 - Plasma enhanced chemical vapour deposition: entire film
 - Tritiation post film deposition: ~50 nm
- Tritiated silica on Si-chip
 - High pressure tritium loading
 - Laser irradiated locked tritium
- Tritiated silicon
 - High pressure tritium loading
 - Surface region: ~ 10 nm
- Tritiated carbon nanotubes

Outline

- Tritium: Basics
- Tritium: A MicroPower Source
 - Beta-Voltaics
 - Beta-Powered MEMS
 - Beta-Luminescence
 - Cold Electron Source
- Tritium: A Characterization/Diagnostic Tool
 - Tritium Tracer Studies
 - Tritium Outgassing & Effusion Studies
 - Defect Dynamics
 - Particle Sensor Applications
- Summary

Tritium Tracer Technique

- Tritium as a tracer in
 measurement of hydrogen
 permeation in polymer for
 selection of new material in
 hydrogen fuel cell.
- Two diagnostics to trace permeating HT: an ionization chamber tritium detector and an HTO water trap/copper oxide furnace/HTO water trap system
- Tritium radiotracer method: simple, effective, reliable.

Stodilka, Kherani, Shmayda, Thorpe, Intl. J. Hydrogen Energy 25 (2000) 1129-1136

Tritium Tracer Technique (cont'd)

Materials Tested: EPDM, Teflon, Viton, Santoprene and Noryl

Permeation Parameters in reasonable agreement with referenced values of H, D, T

Characteristic permeation curve for Noryl at 60 °C

Arrhenius plot of tritium permeation for the five polymers

Stodilka, Kherani, Shmayda, Thorpe, Intl. J. Hydrogen Energy 25 (2000) 1129-1136

Polymer	Temperature (°C)	$P_0^{\mathbf{b}}$	$E_{\mathbf{P}}^{\mathbf{c}}$	$D_0^{\mathbf{b}}$	E_{d}^{c}
Viton	63-129	$1.72 imes 10^{-4}$	47.7	2.22×10^{-5}	29.1
Teflon	74-150	8.38×10^{-9}	16.7	1.39×10^{-7}	14.9
EPDM	44-76	2.74×10^{-7}	24.4	3.50×10^{-5}	27.9
Santoprene	20-60	1.21×10^{-6}	25.1	1.36×10^{-5}	21.2
Noryl	18-70	2.11×10^{-9}	12.3	$4.05 imes 10^{-7}$	16.9

Tritium Outgassing Studies

- A tool to study hydrogen stability in materials
- High sensitivity
 - Difficult-undetectable for the inactive Hisotope using conventional methods
- Dry and wet test
 - Absorption of HTO desorbed from surface of a given sample
- Tritiated amorphous silicon at room temperature
 - Atomic T concentration: 9%
 - Asymptotic evolution: 2x10⁸atmcm⁻²s⁻¹
 - Equivalently: Void-Network H diffusion half-life of 60 years
 - This is for a low H stability material, owing to the high void fraction of the material

Kosteski, Ph.D thesis, Univ. Toronto. (2001) Kherani, Liu, Virk, Kosteski, Gaspari, Shmayda, Zuktoynski, Chen. J Appl Phys, **103**, (2008), 024906

Tritium Effusion Monitor

Tritium Effusion

- Tritiated amorphous silicon
 - No tritium evolution at room temperature
 - Characteristic peaks observed at temperatures above the film growth temperature
 - Lower temp peak: higher hydrides SiHx
 - Higher temp peak: mono-hydride SiH
- Tritiated carbon nanotubes
 - Tritium exposure:
 - 100 bar at 100 °C for 3 days
 - Concentration:
 - Atomic: 1.9%
 - Weight: 0.5%.
 - Gaussian deconvolution:
 - Peaks at 240 °C and 500 °C
 - High temp peak: chemisorbed T
 - Low temp peak: physisorbed T

Kherani, Liu, Virk, Kosteski, Gaspari, Shmayda, Zuktoynski, Chen. J Appl Phys, 103, (2008), 024906

- Purified Single
 Walled Carbon
 Nanotubes (SWNT)
- ~25 µm paper-like film
- Surface Area: 1500 m²/g
- Density: ~0.9 g/cm³.

Defect Dynamics

- Hydrogenated amorphous silicon solar cells
 - Staebler-Wronski effect
 - Formation of Si- dangling bonds upon light exposure
 - Drop in efficiency

Tritiated amorphous silicon

- Defined rate of tritium decay, hence formation of Sidangling bonds
- Can study samples under defined condtions (no light exposure)

Dynamic defect model

S. Pisana, S. Costea, T. Kosteski, W. T. Shmayda, N. P. Kherani, S. Zukotynski, J Appl Phys 98 093705 (Nov 2005) 1-5.; Stefan Costea, Nazir P. Kherani, Stefan Zukotynski, J Mat Sci, Vol. 18, Supp. 1, 175-182. (October 2007).

Beta Source Particle-Smoke Detector

- Tritium beta source instead of traditional alpha source
 - No gamma emission (as in Am-Be alpha source)
 - Provides bipolar and unipolar regions in the detector
 - Higher absolute current signal
 - Higher sensitivity
 - Several to forty fold more responsive than alpha based detectors
 - Functions like a dual detector (ionization and photoelectric detectors)
 - Smouldering fires
 - Open flame fires

Liu, Alvarez-Ossa, Kherani, Zukotynski, Chen, *IEEE Sensors J.* **7** (2007) 917.

Summary

• Tritium a micro-power source

- Radio-Isotope Micropower Sources (RIMS) is an active area of R&D
- Renewed interest is motivated by continual miniaturization of electronic and electromechanical devices with concurrent reduction in power requirements
- Tritium an amenable radioisotope given its properties and availability
- Tritium a powerful diagnostic for hydrogen-material studies
 - Ease of experimentation given hydrogen is pervasive
 - Unparalled sensitivity under "non-vacuum" conditions
 - Fundamental studies

Acknowledgements

Funding and support of the following organizations is gratefully acknowledged.

- Natural Sciences & Engineering Research Council of Canada
- Defense Advanced Research Project Agency
- Materials & Manufacturing Ontario, Ontario Centers of Excellence
- Ontario Power Technologies
- National Sciences Foundation
- BetaBatt
- University of Rochester
- Rochester Institute of Technology
- University of Pittsburgh
- University of Toronto