Environmental Issues And Structural Clay Products Jim Frederic National Brick Research Center SCPD Spring 2008 Meeting #### Topics For Discussion - NO_x Emissions - CO/CO₂ Emissions - Measurement of Crystalline SiO₂ - Defining Carbon and Sulfur Contents - Fluorine Content of Raw Materials #### Overview of NO_x Emissions - Sources of NO_X Emissions - Survey Plant Measurements of NO_X Emissions - Lab Measurements of NO_x Emissions - Conclusions on NO_X Emissions #### What is NO_x - The term NO_X is used to describe the most common oxides of nitrogen, NO, and NO₂. - NO_X emissions occur when nitrogen (N₂) and oxygen (O₂) combine at high temperature. - There are three recognized mechanisms for the formation of NO_X from combustion processes. - Thermal NO_x - Prompt NO_X - Fuel NO_X #### Thermal NO_x - Thermal NO_X is formed when Nitrogen (N₂) and Oxygen (O₂) dissociate at high temperature and react to form NO_X at high temperature. - The rate of thermal NO_X formation is affected by: - Peak Temperature - Oxygen Concentration - Time at Temperature North American Combustion Handbook, Volume II, North American Mfg. Co., Cleveland OH, 1997 #### Other NO_x Mechanisms - Prompt NO_X - Prompt NO_X is produced at low temperature by the reaction of N₂ and partially burned hydrocarbons (VOCs). - This is a very minor source of NO_X . - Fuel NO_X - Fuel NO_X is produced by the oxidation of nitrogen compounds in the fuel. - Natural gas has a very low nitrogen content which means that the amount of Fuel NO_x that is produced is negligible. - Other fuels that have a higher nitrogen content may produce more Fuel NO_X . #### Overview of Plant Emission Measurements - NO_X emissions were measured at several plants using an Enerac hand held emission monitor. - The monitor measures both NO and NO₃, but only NO was measured in our plant measurements. - Excellent correlation was found between the Enerac and a continuous emission monitoring system at one of the plants. - All measurements were taken on a dry basis. # Overview of Lab Measurements of NO_X Emission #### Conclusions on NO_X Emissions - NO_X emissions are a consequence of the combustion process, but are influenced by kiln temperature and oxygen content in both lab measurements and plant measurements. - Exhaust flow rate, production rate and energy consumption rate were also found to influence NO_X emissions based on statistical analysis of plant measurements. - Based on these measurements, it appears that the AP-42 emission rate for NO_X is too high and deserves further consideration. - In the lab, NO₂ emissions were observed first, but as the temperature increased, NO emissions predominated. # Overview of CO/CO₂ Emissions - Sources of CO/CO₂ Emissions - Lab Measurements of CO/CO₂ Emissions - Plant Measurements of CO/CO₂ Emission - Comparison of Total Carbon Emissions and Carbon Emissions from the Raw Materials (by Mass Balance) # Sources of CO/CO₂ Emissions - Combustion process - The ratio of CO to CO₂ is determined by the available oxygen and the temperature where combustion takes place. - Oxidation of organics in the raw material - Inside the brick, CO is generated as the organics burn, but depending on the temperature and availability of oxygen, may oxidize to CO₂ once it migrates out of the pores of the brick. - In extreme cases where oxygen is extremely limited, volatile organic compounds (VOCs) may be generated. #### Observations on Lab Kiln CO/CO₂ Measurements - CO and CO₂ emissions were measured on an empty lab kiln to understand the combustion process. - CO emissions were measured as soon as the pilots were lit. - CO emissions began to decline at 1000°F due to the auto-ignition of CO. - CO appears to take oxygen from NO₂ above 1000°F to make NO and CO₂. - CO₂ emissions increased with increasing kiln output and closely mirrored the oxygen content of the kiln exhaust. ### Lab Kiln CO₂ Emission Comparison - CO₂ emissions were compared on the empty lab kiln, and the lab kiln containing 200 lbs of brick using the same heating schedule. - The CO₂ output was only slightly increased for the run with brick. - A small increase in kiln output was also required to heat the brick. #### Conclusions on CO/CO₂ Emissions - Based on these measurements, it appears that the AP-42 emission rate for CO₂ is too high for some kilns and deserves further consideration. - We found the highest CO₂ emissions for the plant with the highest energy consumption. - CO emissions were highest for the plant with the highest carbon content in the raw material. - It appears that the carbon content of the raw material contributes only a fraction of the total CO₂ emissions. - For the plant with the highest carbon content in the raw material, up to 20% of the total CO₂ emissions could be coming from the carbon in the raw material. - For the other plants, 10% or less of the CO₂ emissions could be attributed to carbon in the raw material. #### Measurement of Crystalline Silica-A Comparison of XRF and XRD #### XRF = X-Ray Fluorescence - Provides the chemical oxide analysis of raw materials - Identifies and determines the quantity of <u>most</u> elements - Most results reported as oxides using molecular weight conversions (thus, Si reported as SiO₂) - SiO₂ is TOTAL silica # Typical XRF Chart #### **RESULTS** | | | Blend #1 (base Blend#3 (base mix mix. plant) lab) | | | |--------------------|------|---|--------------------------|--| | Major Constituents | Unit | As Received
3/12/2008 | As Received
3/12/2008 | | | Al2O3 | % | 18.72 | 18.54 | | | SiO2 | % | 64.12 | 65.61 | | | Na2O | % | 0.61 | 0.51 | | | K2O | % | 1.72 | 1.61 | | | MgO | % | 1.62 | 1.23 | | | CaO | % | 1.48 | 1.39 | | | TiO2 | % | 0.91 | 0.93 | | | MnO | % | 0.04 | 0.04 | | | Fe2O3 | % | 4.71 | 4.22 | | | P2O5 | % | <0.018 | <0.018 | | | S | % | 0.31 | 0.31 | | # XRD = X-Ray Diffraction - Provides the identity of minerals or crystalline phases - Also quantifies the minerals or crystalline phases - Results reported by mineral name, not by elements - SiO₂ is clearly identified as either "Combined" or "Crystalline" # Typical XRD Charts #### Typical XRD Charts #### Typical XRD Charts #### Defining Carbon and Sulfur Contents (for Potential Burnout and Emissions Problems) - Organic carbon versus inorganic carbon (for example, carbonates) - Sulfides versus sulfates - Basis in ASTM E-1915 - Test Method is LECO - Total carbon and sulfur, as received - Heat samples to 550°C - Total carbon and sulfur, pyrolyzed/calcined samples | Sample | Sulfur | | Carbon | | |------------------|--------|------------|--------|-------------| | Dry | 0.134 | | 0.864 | | | Fired (to 550°C) | 0.125 | (Sulfates) | 0.289 | (Inorganic) | | | | | 12 15 | | | Difference | 0.009 | (Pyrites) | 0.575 | (Organic) | All results in weight % #### Raw Material Selection Shale with a tendenancy to efflorescence #### Fluorine Content of Raw Materials - "Content" only (pyrohydrolysis) - "Mass Balance" (pyrohydrolysis) for potential emissions - Use of HF information by various states - Relation to MACT status - Examples